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Commercial products: Demonstrations: Research frontier:
<130 Gbits/in2, 80-130 GB/3.5” Platter up to 240 Gbit/in? >500 Gbits/in?
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* Why bit patterned media (BPM)?
e Manufacturing aspects ¥
e Writing on BPM
A new requirement: synchronized writing 2

Analysis of written-in errors
Timing
Writing margins
 SNR considerations at read-back
e Potential of BPM
e Conclusion

1) B.D. Terris, T. Thomson, J. Appl. Phys. D, vol. 38, p. R199, 2005
2) R.L. White et al. IEEE Trans. Magn. vol. 33, pp. 990, 1997, G. Hughes,

“Patterned Media”, Springer, 2001.
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A Bit In Today's Media

correspond to

Seagate’s recent 240
Gb/in? demonstration

Too small grains

become thermally

unstable

So why not make one

grain per bit?
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BPM recording is limited by:

(At Recording)

SMNR due to dot (At Read-back)
position fluctuations
“Written-in errors dominateH
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Bits "snap in" on the disk
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Bits will always be recorded on fixed locations.

However: bits can only "snap in" if timing is sufficiently accurate
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' i head does no longer catch dot
— >
:4—8—> | head: catches wrong dot
: >
e 5D Timing window:
P : :
' s,/2 Sp/2 to either side
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ldeal: Window Is s,
but is experimentally
found to be smaller -
non-ideal materials
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M. Albrecht et al, Appl. Phys. Lett., vol. 80, pp 3409-3411, 2002
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Dot positions fluctuations S0s.x l-]
(primary down-track) Ox = ~
Sp
AM
Switching field distribution = »H
m
Interaction fields S O e S
A W U W W
...(+ electronics =~ = -
( ) v W W W W
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To reduce fluctuations:

Want to record at point
with sharpest gradient
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Hy/M, : D= 14nm
max: 0.101 Sp=25.4 nm
BIL =1 nm
0 =9 nm

Count

Interaction fields add to
head field

O
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 A

Range
Hyna: All dots magnetized in same direction

o.4. Calculation of H, for random patterns, typically 1000
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Probability of a timing error P, :1_erf[ B/2 ]
(all Gaussians) V2o X

2 2
O_X:\/(O_)I(—Isw) +(O_)I(-Id) +(O')POS’X)2

Switching field Interaction field Distribution due
distribution distribution to dot spacing
(anisotropy field (surrounding dots)  fluctuations
distribution)
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Finite probability some dots are not switched at all
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1 H oy max — H
Probability of a “write-miss”  |P,, =—=| 1—erf| —Max___sw0
2 o2

Hymax: Max eff. head

B \/( )2 ( )2 field
O-H - O-HSW i GHd H . Mmean
sw0*

switching field

Switching field distribution Interaction field distribution

druton) (surrounding dots)
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BER = P/2

(because there is a 50% chance that the dot is magnetized
correctly)

For simplicity, we assume that timing errors and
write-miss errors simply add:

BER = LT Fw
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 Assume that all dots have been written as intended
(BER due to SNR adds to BER due to written-in errors)

e Noise sources:

+——>

— —

— Dot spacing fluctuations l]
< = >i

— Dot size fluctuation > 4]—»

Others: M., thickness fluctuations
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e Dot spacing fluctuations = jitter
 Effect of dot size fluctuations is reader dependent

Big dots in a small reader Small dots in a big reader
PW<<D PW >> D
Ry <<D Ry, >>D —_— —
o
PW mod Amp mod 2X
MmO X P R
. oD
Flux fluctuation | ZF
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. : 1
Simulation versus SNR =

Y 2 Simplified picture
[1.5401J + (R 9D J P P
B D
_35 . . . .
m . J— = —,f OF o1 ci—2 . -
S0l 0j/B=0  Rw=l7.omm, ggg=dum | dot location dot size
= D=25nm, R =1.87 (fit) variations variations
a5 L
7= 5%
20
15 jitter amplitude
10 modulation modulation
20% /B <26,/D
5 ] ] ] ]
0 0.025 005 0075 01 0125
op/D
SNR

Dots: simulation with reciprocity read-
back, jitter is 1D.
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* Assume elliptical dots (aspect ratio 4)
* Neglect all distributions: c,/D = 6,/H, = op/Sp = 0.05%
« Two configurations:
pole head, SUL + storage layer
ring head + storage layer
* Two hard layers:
conventional
composite with optimized coupling
 Limiting condition:
20 KT minimum energy barrier at adjacent track
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Effective Fields for all Combinations

Z y
pole head with SUL ring head %
P conventional
s \ \ i,x"‘ |

xz-plane yz-plane j

0 field angle (°) 90

composite

xz-plane yz-plane 5

0 field angle (°) 90

gy. half-gap, hks: head-keeper spacing
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AD

L

M, & BER, BER, BER

(Tb/in2) (nm) (nm) (nm) (nm) (nm) (nm) (kA/m) (kA/m) (nm) (nm) (kA/m) (nm) (dec) (dec) (dec)

—_ = W N = LW N

Pole head/SUL about equivalent to ring head

42 na 75 1277 85 34 1716 1300 2
30 na 397 898 75 30 1572 1300 3
29 na 324 733 65 26 3184 400 3
26 na 324 733 63 25 3137 600 1.75
23 na 224 635 6 24 3279 400 2.75
20 na 1.75 5.66 55 22 3431 400 2.75
55 25 75 1277 8 32 1388 700 2.5
32 17 397 898 7.5 30 1622 1300 2
33 18 324 733 63 25 2583 400 2.75
21 na 75 254 16 16 1032 1300 6
24 21 75 254 16 16 1037 1300 5
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Pole head/SUL + composite is best

H.J. Richter
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na na <-134 <-15 <-134

na na -2.1 32 20
1200 1 -12.7 9.5 495
600 4 -7.4 -7.3
1200 1 -5.5 -5.5
24 . -2.4
<-15 <-15
-7.5
-54
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BAR = 1 is not good
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Distribution Effects (1Tb/in?)

Contours of written-in error rates due to timing errors
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Distribution Effects
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and Read-back

op/D = opya/Ha= 0 p/Sp =G

- R BER, .4
2 @ read
10% 1025 | 103°
7.5% 1038 | 10763
504 1063 | 10-129

15 tten-in Errors Domin

Further loss in BER due
to read amplitude, but:

P+ Py

<< BERmed << BERhead
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® BPM recording requires synchronized writing

®* BER >> BERmediumSNR (>> BERheadSNR)

written-in

® Error rates are controlled by distributions
® Anisotropy, dot spacing, dot size, etc.

® Ultimate performance is limited by:

® \Writing, adjacent track erasure/thermal stability
® “distribution” caused by interaction fields

® Best combination: pole head + SUL + composite medium

® BPM recording beyond 1 Th/in? should be possible
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