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Areal Density Progress
Research frontier:
≥500 Gbits/in2

Commercial products:
≤130 Gbits/in2, 80-130 GB/3.5” Platter

Demonstrations:   
up to 240 Gbit/in2
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Overview
• Why bit patterned media (BPM)?

• Manufacturing aspects 1)

• Writing on BPM
A new requirement: synchronized writing 2)

Analysis of written-in errors
Timing
Writing margins

• SNR considerations at read-back
• Potential of BPM
• Conclusion

1) B.D. Terris, T. Thomson, J. Appl. Phys. D, vol. 38, p. R199, 2005
2) R.L. White et al. IEEE Trans. Magn. vol. 33, pp. 990, 1997, G. Hughes, 

“Patterned Media”, Springer, 2001.
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A Bit in Today's Media

50nm

~65 grains

Dimensions 
correspond to 
Seagate’s recent 240
Gb/in2 demonstration

Too small grains 
become thermally 
unstable

So why not make one 
grain per bit?

The density can 
therefore increase by 
a factor of 65!

Why BPM?
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The Main Result of This Talk

(At Recording)Written-in errors 
(timing, write-miss)

SMNR due to dot 
position fluctuations

(At Read-back)

Written-in errors dominate

BPM recording is limited by:
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What is Different on BPM: Timing

Bits "snap in" on the disk

Bits will always be recorded on fixed locations.

However: bits can only "snap in" if timing is sufficiently accurate

sD



Slide 7
Intermag 2006 
H.J. Richter

A new Aspect: Timing
target dot

sD

head catches wrong dot

head does no longer catch dot

sD/2

Timing window:
sD/2 to either side

sD

W ideal timing

v
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Timing Requirements, Experimental

Ideal: Window is sD

but is experimentally 
found to be smaller -
non-ideal materials 

M. Albrecht et al, Appl. Phys. Lett., vol. 80, pp 3409-3411, 2002

=sD
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What Enters into the Timing Budget

Dot positions fluctuations 
(primary down-track)

Switching field distribution

Interaction fields

...(+ electronics)

sD

H

M

xpos
x

,σ
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Timing Analysis: Switching Fields

To reduce fluctuations:

Want to record at point 
with sharpest gradient

Distribution of 
switching fields

Fluctuation of 
writing positions

Hsw
xσ
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Timing Analysis: Interaction Fields

Interaction fields add to 
head field

Hdmax: All dots magnetized in same direction
σHd: Calculation of Hd for random patterns, typically 1000

Interaction fields

Hd
xσ
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Variance Analysis: Timing
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A Second Source of Error: Write-Miss

Finite probability some dots are not switched at all
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Variance Analysis: Write Margin

Probability of a “write-miss”:

Switching field distribution
(anisotropy field 
distribution)

Interaction field distribution 
(surrounding dots)
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Combined Effect
BER = P/2
(because there is a 50% chance that the dot is magnetized 
correctly)

For simplicity, we assume that timing errors and 
write-miss errors simply add:

2
wt PP

BER
+

≅
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Read-Back
• Assume that all dots have been written as intended

(BER due to SNR adds to BER due to written-in errors)

• Noise sources:

Dot spacing fluctuations

Dot size fluctuation

Others: Ms, thickness fluctuations

sD
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Noise Mechanisms at Read-Back
• Dot spacing fluctuations = jitter
• Effect of dot size fluctuations is reader dependent

PW mod

PW << D
RW << D

Big dots in a small reader Small dots in a big reader

Amp mod 2x

PW >> D
RW >> D

Flux fluctuation

relevant

D
Dσ2∝
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Read-Back Medium SNR
Simplified picture

Dots: simulation with reciprocity read-
back, jitter is 1D.

dot size 
variations

dot location 
variations

jitter 
modulation

amplitude 
modulation

SNR

σj/B ≤2σD/D

Simulation versus
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Areal Density Potential of BPM
• Assume elliptical dots (aspect ratio 4)
• Neglect all distributions: σD/D = σHA/HA = σsD/sD = 0.05%
• Two configurations: 

pole head, SUL + storage layer
ring head + storage layer

• Two hard layers:
conventional
composite with optimized coupling

• Limiting condition: 
20 kT minimum energy barrier at adjacent track
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Effective Fields for all Combinations
x

yz

gH: half-gap, hks: head-keeper spacing
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Pole head/SUL about equivalent to ring head 

Results (Elliptical Dots)

BAR = 1 is not good

Pole head/SUL + composite is best
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Distribution Effects (1Tb/in2)
Contours of written-in error rates due to timing errors
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Distribution Effects and Read-back

Written-in Errors Dominate  

σD/D = σHA/HA = σsD/sD = σ

σ
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BERmed
@ read

Further loss in BER due 
to read amplitude, but: 2

wt PP +
<< BERmed << BERhead
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Conclusions
• BPM recording requires synchronized writing

• BERwritten-in >> BERmediumSNR (>> BERheadSNR)

• Error rates are controlled by distributions

• Anisotropy, dot spacing, dot size, etc.

• Ultimate performance is limited by:

• Writing, adjacent track erasure/thermal stability

• “distribution” caused by interaction fields

• Best combination: pole head + SUL + composite medium

• BPM recording beyond 1 Tb/in2 should be possible


