4D TECHNOLO

Dynamic Laser Interferometry for Disk Shape Characterization

DiskCon Asia-Pacific 2006

Chip Ragan chip.ragan@4DTechnology.com www.4DTechnology.com

Interferometry Basics

Two Beam Interference

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\alpha_1 - \alpha_2)$$

 $\alpha_1 - \alpha_2$ phase difference between interfering beams

 $\alpha_1 - \alpha_2 = (\frac{2\pi}{\lambda})$ (optical path difference)

Interferometry

The Leader in Dynamic

Temporal Phase Shifting Interferometry (PSI)

Physical translation of reference surface to generate data.

 $I(x,y) = I_0 + I' \cos[\phi(x,y) + \phi(t)]$

 $I_{1}(x,y) = I_{0} + I' \cos [\phi (x,y)] \phi (0.03s) = 0 \qquad (0^{\circ})$ $I_{2}(x,y) = I_{0} - I' \sin [\phi (x,y)] \phi (0.06s) = \pi/2 \qquad (90^{\circ})$ $I_{3}(x,y) = I_{0} - I' \cos [\phi (x,y)] \phi (0.09s) = \pi \qquad (180^{\circ})$ $I_{4}(x,y) = I_{0} + I' \sin [\phi (x,y)] \phi (0.12s) = 3\pi/2 \qquad (270^{\circ})$

$$\varphi(x, y) = Tan^{-1} \left[\frac{I_4(x, y) - I_2(x, y)}{I_1(x, y) - I_3(x, y)} \right]$$

Height
$$(\mathbf{x}, \mathbf{y}) = \frac{\lambda}{4\pi} \boldsymbol{\varphi}(\mathbf{x}, \mathbf{y})$$

Note: Method is camera <u>frame-rate</u> limited Typical acquisition time is 200 – 400 msec

Use polarizer as phase shifter

Circ. Pol. Beams $(\Delta \phi)$ + linear polarizer $(\alpha) \longrightarrow \cos(\Delta \phi + 2\alpha)$ *Phase-shift depends on polarizer angle*

Kothiyal and Delsile, Appl. Opt. V24 n24 p4439 (1985) Kemo, et. al, Appl Opt. V41 n 13 p2448 (2002)

Device Architecture

Unit Cell Layout

Pol. orientation

Single layer

Multi-layer

• Fabrication

- Photolithographic single layer method
- High accuracy matching to pixels
- Contrast ratio >1000:1
- Wavelengths 400nm >1 micron

Array of oriented micropolarizers

Polarizer array Matched to detector array pixels

The Leader in Dynamic

Interferometry

Tilt Beam Fizeau

Note: Alignment Arm not shown Multiple patents pending

Static Shape of AI Disk

Interferogram

Surface profile

Supports all standard analysis parameters for PV, RVA, Flatness, Waviness

The Leader in Dynamic Interferometry
Dynamic Shape of AI Disk

Surface Measurements, 5600 RPM

Modal Analysis Configuration

Frequency, Phase, Amplitude, Trigger Interval

Modal Analysis Phase Movie 3069Hz Resonance

Environmental Testing

Figure testing of 300 mm Zerodur mirrors at cryogenic temperatures, Baer & Lotz, SPIE 4822-4 July 2002

System Configuration For Glass

Fizeau Interferometer

Front Side, 95mm Glass

- Fringes Focused on Top Surface of Glass Disk (S₁)
- Surface referenced to Transmission Flat
- Measurement is top surface shape.
 M₁ = S₁

Back Side, 95mm Glass

- Fringes Focused on Back Surface (S₂)
- Measurement is M₂ = nS₂ – (n-1)S₁
- Back surface (S₂) can be calculated by <u>M₂ + (n+1)S₁</u> n

Thickness Variation

- Difference of S₂ and S₁
- Thickness variation map across sample.

AI Disk with Short Coherence

Short Coherence Dynamic Interferometry provides flexibility for both AI and Glass measurements.

Direct Thickness Variation

- Transmission Flat removed
- Front of Glass Disk used as Reference

Direct Thickness Variation

- Disk clocked approximately 90° from previous measures.
- Provides direct measure of thickness variation across glass disk.

Conclusion

Dynamic Interferometry

- Static Surface Measurement of Aluminum Disks
- Dynamic Surface Characterization
- Environmental Chamber Testing

Short Coherence Dynamic Interferometry

- Aluminum
 - Front Side
 - Dynamic Surface Characterization
- Glass
 - Front Side
 - Back Side
 - Thickness Variation
 - Dynamic Surface Characterization

