

4K-Block Format Efficiency and SNR Gain

M.Hassner/HGST

Content

- 4K-Block Format Standard Chronology [1998 - 2005]
- Motivation: AD-Growth Bottleneck
 [1998, IBM Task Force]
 [S.McCarthy/Maxtor,5/30/2001, DiskCon Presentation]
- MARVELL 4K-Block Evaluation
 [T.Doan, 1/31/04, requested by IDEMA]
- 4K-Format Efficiency/SNR Gain Estimates
- Summary

- 1998 IBM Task Force Recommendation (M. Hassner)
- 1998 NSIC White Paper (D. Cheng, M. Hassner, B. Lamberts, and R. Wood)
 - 100 GB/in² recording → 6 db loss of SNR
 - Signal processing will recover 3 dB
 - Stronger ECC required to recover 3 dB → 4 KB block size
- 2000 IDEMA 4K Block Committee (E. Grochowski, M. Hassner)
- 2002 Hitachi proposal large block ATA standard (D. Colegrove)
- 2003 IDEMA Position Paper
 - Joint position of Hitachi GST, Seagate, Maxtor, and Fujitsu
 - Sent to Microsoft 11/19/2003
- 2004 Microsoft Support for 4K Block Format
 - Support for 4K block will be in "Longhorn" (6/4/2004)

6 Bits and a Track at 10 to 100 Gb/in²

Summit 8-June-2005

Media Noise at 10 to 100 Gb/in²

Summit 8-June-2005

Potential ECC Gains

Improvements in Error Correction on 512 Byte sectors are diminishing

Increased Sector Size

- Longer Sectors improve Error Correction capability
 - Even with long sectors, SNR and BER will get worse

Diamond Max

May 80, 2001

Steve McCarthy

Background

- The IDEMA is proposing 4K bytes sector size. Dr. Martin Hassner (HGST) had a discussion with Marvell on several ECC schemes.
- The schemes discussed are:
 - A. Integrated Sector Format (ISF)
 - B. Interleaved 10-bit ECC (4 interleaves)
 - C. 12-bit ECC w/o interleaving
- We investigated the gain and the complexity of each scheme. The assumptions are:
 - 100 bytes (800 bits) burst correction is needed. Burst corrections are assumed to be performed on the fly for all methods in this comparison
 - Target operating point is raw BER around 1e-3 before ECC
 - For simplicity, bit errors are assumed to be independent

STORAGE CHANNEL BINARY DATA PROCESSOR

Summit 8-June-2005

The ECC Schemes: Performance

ISF: [1-3-5-7], [2-4-6-8], each chunk has a second level correction up to 40

Conclusions

 We have investigated several ECC schemes for the 4KB sector format. The 12-bit ECC without any interleaving seems to be very attractive.

MARVELL 4K-Block ECC Gain Calculation

- Binomial Error Distribution Model
- Current Bit Error Rate at Read Channel Output $\approx 10^{-5}$, 9% Overhead
- Assume— Bit Error Rate at Read Channel Output 10^{-2.8}, 9% Overhead
 - 512-Byte Sector 10-bit ECC $[N=450,t=40] \rightarrow 10^{-5} \ {\rm Byte \ Error \ Rate}$
 - 4K-Byte Sector 4-wy interlved 10-bit ECC $[N=900,t=40] \rightarrow 10^{-9}$ Byte Error Rate
 - 4K-Byte Sector 12-bit ECC $[N=3000,t=135] \rightarrow 10^{-19}$ Byte Error Rate

4K-Block 12-bit ECC Gains

- 512-Byte Sector Format
 - 10-bit GF-Implementation/10-bit clock
 - 9%-Overhead
 - ber $10^{-5} 10^{-6} \rightarrow$ BER $10^{-11} 10^{-12}$
- 4K-Block Sector Format
 - 12-bit GF-Implementation/12-bit clock
 - 5%-Overhead
 - ber $10^{-3.0} 10^{-4} o$ BER $10^{-11} 10^{-12}$
 - Format Efficiency Gain 13-14%

- SNR Gain 9 - 10%

4K-Block Defect Correction

- 512-Byte Sector Format
 - 10-bit GF-Implementation
 - 9%-Overhead [400-bits]
 - Correctable Defect Length ≈ 380 bits
- 4K-Block Sector Format
 - 12-bit GF-Implementation/12-bit clock
 - 5%-Overhead [1728-bits]
 - Correctable Defect Length ≈ 1700 bits

Summary

- 4K-Block Sector Short-Term Gain
 - 22 24%-Capacity Gain
 - Significantly Improved Hard Error Rate
- 4K-Block Sector Long-Term Gain
 - Maintain **AD-Growth** $100Gb/in^2 \rightarrow 1Tb/in^2$ [12dB **SNR-Loss**,NSIC SP Roadmap]
 - Multilevel/Iterative Coded Signal Processor

References

- www.idema.org/Long Data Block
 - IBM NSIC White Paper, 1998
 - DiskCon2001 Presentation, S. McCarthy/MAXTOR
 - DiskCon2001 Presentation, M. Hassner/IBM
 - HGST Long Block T13-ATA Committee
 Proposal, D. Colegrove, 2002
 - SEAGATE/MAXTOR/FUJITSU/HGST 4K-Block Position Letters, 2003
 - MARVELL 4K-Block Evaluation, 2004