Heraeus

Advanced Storage Technology Consortium

Launch Event

January 31 – February 1 2011

ASTC

- Expanding and enhancing the power of R&D funding and technology development between storage industry participants, suppliers, universities, laboratories, and institutes
- Mission: member-directed, scalable R&D organization to address – pro-competitively – fundamental technology challenges
- Supply chain involvement
- HDD technology roadmap

ASTC Structure

Heraeus

Some Facts About Data Storage

HDDs and Growing Storage Demand

Exabytes 1000000000000000000000 10000000000000000000000 20xx: "Super 20xx: HAMR/PM **Petabytes** 10000000000000000 Cloud" & Beyond 2010: Cloud, Web2.0, i-2010: 3TB STX Drive, Stuff Hybrid Drive 2005: 500GB & PMR Technology **HDD Progress** 2000:Consumer Application-Camcorder, DVD, etc Megabytes 1990:RAID/NAS/SAN 1990: 2.5'inch-100MB 1980: Microcomputer **Kilobyte** 1980:PC Era 10MB

Beyond HDD/System

Fact 1: Consider That

40 exabyte(10¹⁸) of
Unique new
information will be
generated worldwide
this year

ASTC

Fact 2: Digital content generated in 2010 is more than has been created in the previous 5,000 years ASTC ASTC ASTC

Source: Gartner

Fact 3: The Ever Expanding Growth of Information

How Much Information? 2009 **Report on American** Consumers

32GBs passes the human eye every day 18 GB of Games 12 GB of Video **3 GB of Movies**

Sponsors:

Fact 4: The Need for HDDs to Store ASTC

http://www.seagate.com/www/en-us/about/investor_relations/

Heraeus

HDD Industry Historical Areal Density Trend

ASTC

Technology Maturity: Slowing PMR Capacity Growth Rate

ASTC

2 Disk Mobile Historical Announces With Volume Ship of > 5M/Qtr

Historical Perspective: Jumping "S" Curves in HDD

Areal Density Scaling and the Magnetic "Trilemma"

ASTC

To preserve signal-to-noise ratio:

SNR~log10(N)

the # of grains in a bit must be constant.

Signal-to-Noise Ratio

Thermal stability

To ensure that the recorded bit is thermally stable, the anisotropy needs to increase proportionally to the grain volume reduction

Stored Energy $\sim \frac{K_u^*V}{k_B^*T} > 70$

IDEMA

In order to write a sharp recorded bit transition, the write field needs to be sufficiently large

Writeability

Write Field >
$$\alpha \frac{2K_u}{M_s} - N_{eff}^*M_s$$

Future Technology Options ASTC

SMR/TDMR

Head Motion

> Continued scaling requires innovations in systems technologies, materials science and process engineering to advance areal density

Solid State Technology Memory as a Competitive Storage Technology

ASTC

ASTC Can Help Address HDD Technology Challenges

ASTC

- HDD Industry is facing challenges to grow areal density at historic rates
- These challenges are distributed throughout component and system level technologies
 - Energy assist technology will not in itself enable AD growth without adequate readers, H/M interface, channel, servo capability, etc.
- Solid State Technology has emerged as a credible alternative to HDD in certain segments, and the semiconductor industry is committed to large scale R&D
- ASTC provides the ideal forum to address these challenges collaboratively as an industry with a holistic but targeted approach

Heraeus

Signal Processing Contribution to HDD Density Growth ASTC

Recent Trends in Signal Processing

- SNR improvements coming from the Read Channel (RDC) were driven by advancements in Error Correction Coding (ECC): large codeword size afforded by adaptation of Long Sector Format, and transition to Soft ECC
- Shingled recording, Bit Pattern Recording (BPR), Two-Dimensional Magnetic Recording (TDMR), and Heat Assisted Magnetic Recording (HAMR) provide new challenges to signal processing
- Hard disk controller SOC should no longer be viewed as a standalone component in the drive; it has become an integral part of system solution.

Challenges Going Forward

- HDD is facing severe competition from SSD and other storage technologies
- HDD industry needs to collaborate to define a technology roadmap
 - A roadmap gives our industry more negotiation power with customers
- New technologies require more R&D investment and collaboration
 - Peak detectors have long been replaced by PRML with sophisticated detectors designed to take signal characteristics into account
 - Powerful iterative decoders come to replace traditional algebraic ECC's
 - Cutting-edge CMOS technology in electronics design is key to future success.
 - Leveraging some technologies used in solid state drives in support of large block write formats in SMR
 - Adding some level of non-volatile chip memory support for power-loss handling

Heraeus

Why is the HDD supply base interested in ASTC?

Suppliers meet HDD Factories

- HDD producers operates at the outer boundaries of technology & scientific knowledge
- "There's plenty of room at the bottom"§
 - One nanometer is the characteristic dimension
 - substrate processes, sputtering, chemistry, metrology
 - Two million hours is the characteristic MTBF
 - automation, disk processing systems, cleaning, RV
 - Three gigahertz is the characteristic frequency
 - SOC, control, interface
- Suppliers must meet producers needs at the outer boundaries of technology & scientific knowledge

Suppliers to HDD Producers

 Far-flung supply chain provides materials, components, manufacturing, processing, and test equipment:

- substrates
- specialty metals
- sputtering systems
- automation
- cleaning systems
- processing equipment
- processing supplies
- certification
- dimensional metrology

- magnetic metrology
- optical metrology
- chemicals
- suspensions
- pre-amps
- channels
- SOC's
- servo track writers
- Supply Chain Goes On ...

Benefits for Infrastructure Companies

ASTC

- "Early warning" to technology transitions
- Lead time to meet process and test requirements
- Roadmap alignment within the industry
 - drive, heads, media, electronics, mechanical components
- Roadmap alignment leads to efficient equipment development
 - Agreed-upon equipment platforms serving the industry
 - Efficient use of R&D resources developing equipment and process
 - Meet time-to-market need for advanced technology products and at lower cost

Partnership HDD/Supply

ASTC

Improving areal density beyond ~1.5 Tb/in² likely will require a transition to new technology

- HDD producers & supply chain collaboration is essential:
 - To manage technology choices
 - To generate detailed technology roadmap
 - To provide guidelines for each of process areas and infrastructure development: "built for manufacturability & testability"
- The success of ASTC will:
 - Steer suppliers efforts and investments to HDD producers' needs
 - Yield shared solutions in component technologies
 - Reduce technology risk and improve time-to-market

Heraeus

So What is ASTC?

Why Do We Need Something Different?

- Pace of technology transitions and scope of change required means business as usual approach won't work
- Need to collimate and focus entire industry R&D to be successful
- Need coordinated transition in supply base -- components, equipment, and materials

Vision for New ASTC

- Global organization
- Learn and borrow from the successes of INSIC EHDR and SRC programs
 - Collaborative research programs with universities
- More open collaboration among companies to share directions and manage projects
- Act with a sense of urgency consistent with the needs of the industry
- Engage broader base of companies

Expected Outputs from ASTC

- Forum to share and coordinate directions to increase speed and reduce waste
- Focused, collaborative research projects that will enable better understanding of key scientific challenges
- Shared, realistic roadmap for the Industry
- Solutions science to engineering to manufacturing options that will shorten time from invention to productization

What is Expected from Members?

- Participation commitment of time
- Openness speed and reduce waste
- Higher funding levels
- More collaboration and direction setting in research projects

ASTC High Level Organization

Steering Committee

Technology Committee

Working
Group

Working
Group

Working
Group

Heraeus

