HAMR Media: A Metallurgist's Perspective

Timothy Klemmer for the Seagate HAMR team

IDEMA The International Disk Drive Equipment and Materials Association

DISKCON USA 2010

• From the media side, much of the advancement came from understanding the metallurgy of CoCrPt thin films: Alloying, grain size control, crystallographic texture

Seagate Barracuda 2TB HDD

\$129.99 & Free Shipping @Newegg.com

6.5¢/GB!

Scaling (and its limits) in magnetic recording

Longitudinal to Perpendicular Recording scheme change from Media perspective

- Longitudinal magnetic easy axis to Perpendicular easy axis
- Incorporate magnetic return path for head

HAMR - the recording process: magnetic vs. thermal gradient

- write process determined by head field gradient and "effective thermal field" gradient
- convolution of thermal and magnetic head and media properties
- if these are of comparable size, best performance expected with alignment of trailing edges of thermal & magnetic field profiles ⇒ challenge for head design

L1₀-ordered FePtAg-C granular thin films for theramlly-assisted magnetic recording media

¹Y.K. Takahashi, ¹L. Zhang, A. Perumal and ¹K. Hono ²B. Stipe ¹National Institute for Materials Science (NIMS), JAPAN ² Hitachi-GST, San Jose Research Center, USA

Recording Demonstration by TAR Head (collaboration with Dr. Stipe of HGST)

Schematic Diagram of TAR Head

Including light delivery, waveguide, plasmonic antenna, magnetic writer, TMR reader, and disk motion direction

Track width 85nm Min bit length 17nm reached, i.e. areal density of 450Gbits/in²

Ref.: B.C. Stipe et al, Nature Photonics (2010) doi: 10.1038/NPHOTON.2010.90

HAMR Recording at Seagate

Recording Laver L1₀ FePt Curie Point 650 K Coercivity >20 KOe

Spin Stand Recording

M. Re (Seagate), INSIC Annual Meeting 2009, Santa Clara, Ca

Media Materials Options (Bulk Properties)

	alloy system	material	K_1	M _s	H_K (kOe)	$T_{C}(K)$	$\mathbf{D}_{\mathbf{p}}^{(a)}$	${\rm D_p}^{(b)}$	$D_p^{(c)}$	D _p ^(d)
			(10^7erg/cm^3)	(emu/cm ³)			(nm)	(nm)	(nm)	(nm)
	•	CoCr ₂₀ Pt ₁₅	0.25	330	15.2		15.5	12.4	15.3	7.8
	Co-alloys	Co ₃ Pt	2	1100	36.4	1200	6.4	6.9	8.5	4.3
		(CoCr) ₃ Pt	0.39	410	19		12.4	10.6	13.2	6.7
		CoPt ₃	0.5	300	33.3	600	9.0	8.6	10.7	5.4
	CoX/Pt(Pd)	Co2/Pt9	1	360	55.6	500	6.1	6.7	8.3	4.2
	multilayers	Co2/Pd9	0.6	360	33.3	500	8.4	8.2	10.2	5.2
		FePd	1.8	1100	32.7	760	7.3	7.5	9.3	4.7
e	L1 ₀	FePt	7	1140	122.8	750	2.4	3.6	4.4	2.3
	phases	CoPt	4.9	800	122.5	840	2.8	3.9	4.9	2.5
		MnAl	1.7	560	60.7	650	4.9	5.7	7.1	3.6
	rare-earth	$\mathrm{Fe}_{14}\mathrm{Nd}_{2}\mathrm{B}$	4.6	1270	72.4	585	3.4	4.5	5.5	2.8
	transition m.	SmCo ₅	20	910	439.6	1000	1.3	2.4	2.9	1.5
		n		9.1.0	1	i 1.1			nan der kriterer - mare -	

 D_{p} : smallest possible thermally stable magnetic grain core size!

CAISS, Santa Clara, February 22, 2006

Dieter Weller

Page 23

Seagate

SmCo₅

L1₀ FePt vs HCP CoCrPt for HAMR media

temperature

temperature

$dH_{eff}/dx = dH_W/dx + dH_K/dT \cdot dT/dx$

	material system	K _U [erg/cc]	H _{K, max}	dH _k /dT [Oe/K]	T _C [°C]	dH _ĸ /dT·dT/dx [Oe/nm] *
1	HCP CoPtCr	0.2-1·10 ⁷	30	10-30	800- 1120	50-150
2	L1 ₀ FePt –based alloys	1 - 7·10 ⁷	100	100-200	200-500	500-1000

*assuming dT/dx = 5K/nm

compare to magnetic head field gradient of ~ 100-200 Oe/nm in modern write heads "exotic" materials or layer structures might provide even larger effective gradients, e.g., RE-TM ferrimagnets, temperature-dependent exchange coupling structures

What is this L1₀?

High Temp Phase=Disordered fcc

Disordered fcc Nanoparticle Example

L1₀ ordered Nanoparticle Example

• Origin of high K_u is chemical order.

•Rapid solidification resulting from room temperature sputtering, freezes in this high temperature disordered phase.

• These sputtered films require annealing to form high anisotropy phase

• $T_{critical}$ ~ Basically, strength of A-B (Fe-Pt) interaction and indicates the Driving Force for Ordering

• $T_{curie} = HAMR$ write temperature

Alloying of FePt L1₀ thin films for HAMR ?

FeXPt +Y X= Stays in Core

- "Give and Take"- Example: T_C can be adjusted, e.g. by doping with Ni, but reduced T_C comes with reduced H_K AND L1₀ formation slows down.
- New material system! Systematic studies of intrinsic effects of 3^{rd} element on T_{curie} , K_u , L1₀ ordering and M_s

Figure 3: The effect of Ni additions on the L1₀ Curie temperature.

Differential Scanning Calorimetry •T_{curie}

• "Kinetic Ordering Temperature"

D.C. Berry and K. Barmak, J. Appl. Phys. 102, 024912 (2007)

Figure 2: Effect of composition on the kinetic ordering temperature

Magnetic and exchange coupling optimization in CoCrPt Media

Co

Cŕ

 T_m indication of diffusion at T_{sub} T_{crit} indication of chemical ordering driving force at T_{sub} Rapid Solidification-Sputter Rate
Dependence: full chemical order in thin films
can only be obtained at very high deposition
temperatures

rate <1Å/sec \Rightarrow T_{growth} ~ 400°C rate ~10Å/sec \Rightarrow T_{growth} ~ 600°C

Seed Layer for Crystallographic orientation

Longitudinal

Perpendicular

Perpendicular HAMR ?

- Epitaxial Misfit
- FePt a₀ and MgO~9%
- FePt c_0 and MgO~12%

Klemmer- Diskcon 2010

Crystalline defects in HCP CoCrPt Media

 \bullet Crystalline defects create distributions in $\rm H_k$ and degrade recording performance.

Longitudinal Media

"Stacking Faults in Co-alloy Longitudinal Media" Bin Lu, Jie Zou, David N. Lambeth and David E. Laughlin, Intermag 2000, BP04

Perpendicular Media

Ganping Ju MMM 2005 Paper CC-05

Crystalline Defects observed in L1₀ Alloys: Bulk Permanent Magnet examples

1) <u>C-Axis variants</u> In perpendicular media these will be observed as σ_{A}

After Zhang, 1991

After Okumara, 1999

2) {111} twins

In perpendicular media these will be observed as σ_{θ}

3) Antiphase Boundaries/ Domains

And

4) Remnants of disorder

In perpendicular media these will be observed as σ_{HK}

Soft Under Layer vs Heatsink

Recording Medium+ Heatsink

Soft Under Layer:

•Increases magnetic field gradient at the write transition.

- Relatively high permeability material.
- Closes the magnetic circuit from the head

Heatsink:

•Increases Temperature gradient at the write transition.

- Relatively high thermal conductivity material.
- Dissipates the heat from the head

$dH_{eff}/dx = dH_W/dx + dH_K/dT \cdot dT/dx$

Effects of HS for model media

Klemmer- Diskcon 2010

FePt Media Progress at Seagate

Thermal design should be optimized for good SNR and low laser power

Mark Re

Klemmer- Diskcon 2010

Challenges for FePt Media

- A New Materials system for Magnetic Storage Layer
 - <u>Process Heat</u> required to form high anisotropy phase
 - Similar to Longitudinal/ Perpendicular CoCrPt (>30 years optimization)
 - FeXPt+Y optimization (K_u, M_s, Grain definition, distributions)
 - Grain defining methods and control
 - Seed Layers for magnetic anisotropy orientation
 - Control of intrinsic defects causing distributions
 - Extendibility
- Heat Assisted Magnetic Recording
 - T_{curie} Tuning (FeXPt)
 - Heatsink design for thermal gradient

