

Fabrication and Testing of Exchange Coupled Composite Media

Weikang Shen and Jian-Ping Wang

The Center for Micromagnetics and Information Technologies Electrical and Computer Engineering Department University of Minnesota

Acknowledgement

- Dr. S. Y. Hong and Dr. H. J. Lee, Samsung Information Systems America Inc., for spin-stand testing.
- Dr. S. N. Piramanayagam, Data Storage Institute, Singapore, for supplying disk substrates with soft underlayer.
- Supported by INSIC-EHDR program and Heraeus Inc.

University of Minnesota

Outline

- Introduction to ECC media
- Fabrication of ECC media using CoCrPt-SiO₂
- Spin-stand recording performance of ECC media
- Switching mechanism of ECC media
- Conclusions

University of Minnesota

Exchange Coupled Composite Media for Perpendicular Magnetic Recording

- Perpendicular magnetic recording (PMR) is currently replacing longitudinal magnetic recording.
- However, the density limit of PMR is around 500 Gbit/in²:
 - Writability
 - Side track erasure (STE)
 - Switching field distribution (SFD)

```
Kryder, et al, 2004
```

• Exchange coupled composite (ECC) media has been proposed and demonstrated to address above issues and extend the areal density of perpendicular recording.

Victora, et al IEEE Trans. Magn. 2005 Wang, et al, Appl. Phys. Lett. 2005

University of Minnesota

Prototype ECC Media

Si(2 nm)/FeSiO(6.5 nm)/PdSi(t nm)/[Co/PdSiO]_n(18.2 nm)/UL & SL/GL

J. P. Wang, el al, Appl. Phys. Lett. 86, 142504(2005).

University of Minnesota

CoCrPt-SiO₂ Hard Layer for ECC Media

Si(2 nm)/CoCrPt-SiO₂(20 nm)/Ru(40 nm)/Ta(5 nm)/Glass

Grain size: 7.0 nm

University of Minnesota

Perpendicular Hysteresis Loops of ECC Media

Si(2 nm)/CoCrPt-SiO₂ (8 nm)/Pt(t nm)/CoCrPt-SiO₂(20 nm)/Ru(40 nm)/Ta(5 nm)/Glass

nologies

H_s~ Interlayer Thickness

Si(2 nm)/CoCrPt-SiO₂ (8 nm)/Pt(t nm)/CoCrPt-SiO₂(20 nm)/Ru(40 nm)/Ta(5 nm)/Glass

University of Minnesota

Disk Structures

Media Type	Structures
ECC	Si(1.5nm)/CoCrPt-SiO ₂ (8nm)/Pt(1.0nm)/CoCrPt- SiO ₂ (20nm)/Ru(20nm)/Ta(2.5nm)/SUL
Con. PMR	Si(1.5nm)/CoCrPt-SiO ₂ (20nm)/Ru(20nm)/Ta(2.5nm)/SUL
Ref. PMR	N.A.

- After fabrication, all disks were packaged in the clean room and shipped to the company for post procession and spin-stand testing.
- Carbon overcoat was 3.5 nm thick. Lubricant is ~1.0 nm thick.
- Reference PMR media is provided by a company, which is targeting for 200 Gbit/in² areal density magnetic recording.

University of Minnesota

Perpendicular Hysteresis Loops

Con. PMR (single hard layer)

ECC media

 $H_c = 6.3 \text{ kOe}$ $H_s = 12.5 \text{ kOe}$

 $H_c = 3.0 \text{ kOe}$ $H_s = 7.0 \text{ kOe}$

University of Minnesota

Spin-stand Test Results (1)

Saturation Curve

University of Minnesota

Spin-stand Test Results (2)

HF-Time Decay

LF-Time Decay

University of Minnesota

Spin-stand Test Results (3)

Roll-Curve

Saturation Curve

University of Minnesota

Switching Mechanisms

Coherent Switching

Incoherent Switching

University of Minnesota

Criteria - Exchange Length in the Soft Layer

A Domain wall must fit in the soft layer near the switching point for exchange-spring model.

Domain Wall Width:

$$\ell_{DW}^{soft} \approx \sqrt{\frac{2A_{soft}}{H_{appl}M_{soft}}}$$

A. Dobin and H. Richter, DB-10, Intermag 2006

University of Minnesota

ECC Media Using [Co/PdSiO]_n

Si(1.0 nm)/FeSiO(6.5 nm)/PdSi(t nm)/[Co/PdSiO]₁₆(18.2 nm)/UL & SL/GL

The Center for Micromagnetics and Inform ation Technologies

University of Minnesota

Domain Wall Width in FeSiO (M_s= 450 emu/c.c.)

Domain Wall Width:

$$\ell_{DW}^{soft} \approx \sqrt{\frac{2A_{soft}}{H_{appl}M_{soft}}}$$

A. Dobin and H. Richter, DB-10, Intermag 2006

$$M_{FeSiO} = 450 \text{ emu/cm}^{3}$$

$$M_{FeSiO}^{Core} = 620 \text{ eum/cm}^{3}$$

$$A_{FeSiO} = 1 \times 10^{-6} \text{ erg/cm}$$

$$\ell_{DW}^{FeSiO} \approx 8.8 \text{ nm} > t_{FeSiO} (6.5 \text{ nm})$$

$$H_{appl} = H_{c} \approx 4.19 \text{ kOe}$$

A domain wall can not fit in 6.5 nm FeSiO (Ms= 450 emu/c.c.) at the coercivity point. Dynamic tilted switching (two spin-model) is the main mechanism for coercivity reduction.

University of Minnesota

Domain Wall Width in CoCrPt-SiO₂ (M_s= 800 emu/c.c.)

Domain Wall Width:

$$\ell_{DW}^{soft} \approx \sqrt{\frac{2A_{soft}}{H_{appl}M_{soft}}}$$

A. Dobin and H. Richter, DB-10, Intermag 2006

$$M_{CoCrPt} = 800 \text{ emu/cm}^{3}$$

$$M_{CoCrPt}^{Core} = 950 \text{ emu/cm}^{3}$$

$$A_{CoCrPt} = 1 \times 10^{-6} \text{ erg/cm}$$

$$M_{appl}^{CoCrPt} \approx 8.4 \text{ nm} \sim t_{CoCrPt} (8.0 \text{ nm})$$

$$H_{appl} = H_{c} \approx 3.0 \text{ kOe}$$

A domain wall can fit in 8.0 nm $CoCrPt-SiO_2$ soft layer at the coercivity point. Domain wall propagation (exchange-spring model) may be the main mechanism for coercivity reduction.

University of Minnesota

Conclusions

- Compared to conventional PMR media, ECC media showed an excellent saturation writing performance.
- Disk level thermal stability was tested. No thermal degrading was found for ECC media, which confirmed the thermal stability of ECC media.
- The switching mechanism of ECC media can be coherent switching or incoherent switching.

University of Minnesota